Friday, July 24, 2009

Types of D.C. Generators

The magnetic field in a d.c. generator is normally produced by electromagnets rather than permanent magnets. Generators are generally classified according to their methods of field excitation. On this basis, d.c. generators are divided into the following two classes:
(i) Separately excited d.c. generators
(ii) Self-excited d.c. generators
The behaviour of a d.c. generator on load depends upon the method of field excitation adopted.

Separately Excited D.C. Generators
A d.c. generator whose field magnet winding is supplied from an independent external d.c. source (e.g., a battery etc.) is called a separately excited generator. Fig. (1.32) shows the connections of a separately excited generator. The voltage output depends upon the speed of rotation of armature and the field current (Eg =PΦ ZN/60 A). The greater the speed and field current, greater is the generated e.m.f. It may be noted that separately excited d.c. generators are rarely used in practice. The d.c. generators are normally of self-excited type


Self-Excited D.C. Generators
A d.c. generator whose field magnet winding is supplied current from the output of the generator itself is called a self-excited generator. There are three types of self-excited generators depending upon the manner in which the field winding is connected to the armature, namely;
(i) Series generator;
(ii) Shunt generator;
(iii) Compound generator
(i) Series generator
In a series wound generator, the field winding is connected in series with armature winding so that whole armature current flows through the field winding as well as the load. Fig. (1.33) shows the connections of a series wound generator. Since the field winding carries the whole of load current, it has a few turns of thick wire having low resistance. Series generators are rarely used except for special purposes e.g., as boosters.


Shunt generator
In a shunt generator, the field winding is connected in parallel with the armature winding so that terminal voltage of the generator is applied across it. The shunt field winding has many turns of fine wire having high resistance. Therefore, only a part of armature current flows through shunt field winding and the rest flows through the load. Fig. (1.34) shows the connections of a shunt-wound generator.


Compound generator
In a compound-wound generator, there are two sets of field windings on each pole—one is in series and the other in parallel with the armature. A compound wound generator may be:
(a) Short Shunt in which only shunt field winding is in parallel with the armature winding [See Fig. 1.35 (i)].
(b) Long Shunt in which shunt field winding is in parallel with both series field and armature winding [See Fig. 1.35 (ii)].

Brush Contact Drop
It is the voltage drop over the brush contact resistance when current flows. Obviously, its value will depend upon the amount of current flowing and the value of contact resistance. This drop is generally small.